
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 14, 95-108 (1992)

PARALLEL ALGORITHMS FOR PANEL METHODS

TIM DAVID AND GRAHAM BLYTH
Department of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT U.K.

SUMMARY

A parallel algorithm for the solution of potential flow problems using the panel method of Hess and Smith
and conjugate and bi-conjugate gradient techniques is presented. Analysis of the parallelism for the matrix
solvers shows the algorithms to have scalable properties as the problem size grows indefinitely large.
Speed-up and efficiency values are presented along with experimental and theoretical values for the
optimum number of processors for maximum speed-up. It is envisaged that the parallel techniques presented
here have applications using other boundary integral methods for solving engineering problems of a more
complex nature.

KEY WORDS Parallel processing Panel methods Conjugate gradients Computational fluid dynamics

1. INTRODUCTION

For any design process incorporating a computational tool, interactiveness is an important
criterion. In order to solve problems involving fluid flow around complex bodies within a reason-
able time period, both the physical properties of the surrounding fluid require some form of
approximation and the computational hardware must be fast in some sense. At present, currently
available computational hardware is of insufficient power to provide interactiveness for the
solution of the full Navier-Stokes equations around complex body shapes. In the initial stages of
design, quick response times tend to be the important parameter, with the body shape changing
frequently and in some cases radically. A possible way of providing this is firstly to assume that
the fluid is both incompressible and irrotational and secondly to utilize the new and increasingly
fast computational power of parallel processing. During the past few years there has been a rapid
rise of parallel mechines both for shared memory architectures such as the Alliant FX series and
for distributed memory such as the Meiko Computing Surface. This has meant that a need exists
for fully scalable parallel software to complement these machines.

Considerable interest has been taken in parallel algorithms for the solution of large matrix
systems and the reader is directed to the publication by Ortega.' In the majority of cases this
interest has concentrated on iterative and direct schemes for sparse matrices. Boundary integral
methods differ from the more common solution methods of finite element and finite difference in
their production of fully populated matrices. The potential role in solving boundary element
formulations for multiple-processor computers and vector machines is, as far as the authors are
aware, only just being addressed.' Fiddes and Chalmers have, however, provided a demand-
driven algorithm for the solution of the panel method implemented on a Meiko Computing
S ~ r f a c e . ~ The solution technique utilizes a minimum path length topology with each processor
tasked independently as it becomes idle. Jacobi and Gauss-Seidel solution methods have been
implemented in parallel to solve the resulting influence matrix.

0271-2091/92/010095-14$07.OO
0 1992 by John Wiley & Sons, Ltd.

Received October 1990
Revised March 1991

96 T. DAVID AND G. BLYTH

The following work attempts to set out a simple yet effective parallel algorithm, using
transputer-based distributive memory hardware, for the fast solution of potential flow problep
from non-lifting bodies to fully discretized complex aerodynamic shapes. In addition, the parallel
solution algorithm has the possibility of being utilized in the more general area of boundary
integral methods where dense matrix systems predominate.

'Potential' flows can represent a remarkably good approximation to the Navier-Stokes
equations for a large class of problems. The classic work of Hess and Smith4 has provided the
framework for the solution of potential flows around complex body shapes. Now well known as
panel methods, this solution technique has been applied in industry to great effect, especially in
the area of aeronautics.596 The panel method, being a linear inviscid approximation to the full
Navier-Stokes equations, is ideally suited to a first-stage design tool for flow visualization around
complex bodies.' In the parallel algorithm outlined below, for reasons of simplicity and for the
purposes of explanation, we have chosen only to use the simple constant-source panel method.

In addition to the panel method, the parallel algorithm has the possibility of being easily
augmented to include solutions to a variety of engineering problems utilizing the boundary
integral technique' for constant piecewise elements. In these more complex cases a simple
conjugate gradient method will probably not suffice, hence requiring the utilization of more
powerful conjugate direction methods. However, as the present study shows, the transputer
topology and the basic parallelism are also applicable to these methods without any significant
changes to the algorithm. The integration of conjugate gradient methods (even without pre-
conditioning) and the panel method has been shown to work previo~sly;~ however, the following
is intended to give a more in-depth investigation of the possible advantages of using conjugate
direction methods from a parallel perspective. All computations for this study were carried out on
a Meiko Computing surface utilizing a maximum of 23 processors.

2. PANEL METHOD THEORY

Fluid equations

The governing equations for irrotational incompressible flow are relatively straightforward'O

mass

momentum
v . v = o ,

a V 1
- + (v * V) v = --vp,
at P

where p is the pressure, p is density and v denotes the fluid velocity at any point in the domain.
Expressing v as the sum of a free stream velocity v, and an irrotational perturbation velocity q, i.e.

v=v,+q, (3)
then by implementing the zero-vorticity assumption for potential flow, the fluid may be modelled
by the Laplace equation

with 4 the potential function. Hence for a given complex body shape the problem has been
reduced to one of finding the appropriate perturbation potential 4 or velocity q subject to
boundary conditions at infinity and at the body surface S . By assuming that the surface is
modelled by a set of discrete panels, on which there exists a singularity distribution, and using the

v24 = 0, (4)

PARALLEL PANEL METHODS 97

zero normal velocity boundary condition, we may derive a set of linear algebraic equations and
hence find a flow field exterior (or interior) to the complex body.

Surface discretization

Shape representation in the form of B-spline curves and surface forms can be adopted to
represent complex bodies with sculptured form. The generation of the panels for a given object
may be based on the creation of a planar polyhedral approximation of the object boundary in
which the polyhedral facets can be used as flow panel^.^ Using this type of integration, the body
surface is easily discretized and the required solution (for the simple source example) is the
evaluation of the strengths of each source positioned at the centroid of each panel. For certain 2D,
axisymmetric and 3D test cases the body panels can be easily obtained from a closed-form
solution. Also, the recent work by Bloor and Wilson",12 is particularly apt for surface discretiz-
ation.

Matrix evaluation

Let qij be the velocity induced at the control point of the ith panel by a unit source density on
the jth panel. This induced velocity may be evaluated using the normal derivative of the
perturbation potential and integrating over the panel surface S j . For 2D the integral can be
evaluated analytically; for the axisymmetric and 3D geometries the integral is numerically
determined using only the spatial and geometrical information of the panels i and j , which is
readily a~ai lable .~ The normal velocity induced at the ith control point by the singularity
distribution at the jth panel is thus

A i j = n i * q . . I J 2 (5)

where ni is the unit normal vector of the ith panel and A , is termed the influence coefficient. From
the boundary condition of a prescribed normal velocity on the body surface at each panel i we
obtain the followng set of simultaneous equations.

N
Ai ja j= - V i m . n i + F i ,

j = 1

a linear matrix system
Aa = b.

Here aj is the source density at the control point of panel j and Fi is a known transpiration
velocity at the control point of panel i. Clearly, from the form of the integral defining the
perturbation velocity, the matrix A is dense and the method chosen for solution is a conjugate
gradient algorithm. Its iterative properties are dependent on the eigenvalues of the matrix. For
the panel method it can be shown'3 that the eigenvalues of the perturbation matrix, li, are such
that ,Ai E [O, 4nl. Preconditioning of the matrix can be used to reduce the spectral radius of the
matrix and enhance convergence properties. At this stage preconditioning is left for the subject of
a further paper.

Once a solution has been obtained, the velocity at each control point on the solid surface is
evaluated by

N

Velocities may now be evaluated at positions within the fluid surrounding the solid surface by

98 T. DAVID AND G. BLYTH

using similar algorithms to that used in the influence matrix evaluation. The off-body velocity is
evaluated with the use of the equation

N
vi= c vijaj+vim.

j= 1

Here the matrix Vii is evaluated by the same method as for qii; however, in this case the panel
centroid position i is substituted by the spatial position at which the off-body velocity is to be
calculated.

3. CONJUGATE GRADIENT METHOD

The basic a lg~r i thm '~ is shown below. Defining the residual r as r = b - Ax, then with xi as the ith
iterate

r(xi) = ri = b -Axi. (9)

We choose an initial value for x, xo, and set ro = po. Thus for k =0, 1, . . . , N

The iteration is stopped when Irk+ 1 < E, with E specified a priori.

4. PROCESSOR TOPOLOGY AND PARALLEL ALGORITHMS

For the current problem we have chosen a linear topology as shown in Figure 1. This network
supports the parallelization of the matrix-vector product which is the 'workhorse' of the
conjugate gradient algorithm. In addition it provides an environment for the parallel matrix
evaluation as described below.

For the panel method the largest amount of work resides in the evaluation of the marix A,
whilst for the conjugate gradient algorithm it resides with the vector product with P k , Ap,.

I
Slave q Slave m

Amp cm Aqp = cq
* .

* *

. . . Slave 1 *
Master ----t

.r
c'a..@cm = Ap,

Figure 1. Processor topology and communication links between processors

PARALLEL PANEL METHODS 99

Suppose we have a body consisting of N panels and a transputer topology of m processors such
that m divides N. (In fact the current algorithm can take account of N mod m#O with the
consequence of a minimal load imbalance; see later.) Since the matrix coefficients are evaluated
simply on the basis of the geometric information of the panels, we may subdivide the matrix
A into strips as shown below, each processor evaluating Nz/m coefficients.

a1.2 a l , N

ak, N

I ' I

I I I

a(q- l)k+ 1 , l

. N

= A.

Here Nlm = k .
Initially all the nodes receive, by broadcast link, the geometric data of all panels. Each

processor then evaluates coefficients corresponding to its position in the matrix. The initial vector
po is broadcast to all processors and the conjugate gradient iteration algorithm is then initiated.

Consider the qth strip of the matrix and its product with the conjugate vector p. For
a submatrix denoted by Aq we have that

Aqp =

.

. 1

P1

PZ
= cq.

Using the submatrix-vector product as shown above, processor q has therefore stored the
vector cq. It receives from the (q- 1)th processor the accumulated vector c1 0 cz 0 . . . 0 c4- '.

100 T. DAVID AND G. BLYTH

Collating this into the correct order, the qth processor transmits to the (q+ 1)th processor the
larger vector c1 0 c2 0 . . . 0 cq as shown in Figure 1. The operator 0 is defined as

then

so that

ci E R', d € Rj,

ci 0 C."E [w i + j ,

. .
c'ocj=[c;,c;, . . . , C f , C i , . . . ,c!].

We note here that the qth process only transmits the minimum amount of information to the
(q + 1)th node, since the vector length of cq stored at the qth node is qk < It.

The master process now receives the full vector Ap from the end node m and evaluates the three
linked triads and the two constants ak and P k from equations (1)-(5) to find rk+ pk+ and xk+ 1 .

Then P k + is broadcast back to the m nodes and the process is repeated. A flow diagram of this
algorithm is given in Figure 2.

The evaluation of the influence conditions for the panel method clearly do not produce
symmetric linear systems, and although conjugate gradient methods have been used previously to
find solutions to potential flow problems over complex body shapes? convergence certainly
cannot be guaranteed. Indeed, the assumption of the algorithm being a direct method is based

SLAVE
Reads Geometry Data

Broadcasts Geometry
to Slaves

I [Evaluates Aq]

-
Broadcasts new p

and exi t-flag
-.

I

iterates x ~ + ~ , * converged .

Figure 2. Flow diagram for parallel algorithm of conjugate gradient method

PARALLEL PANEL METHODS 101

primarily on the matrix A being symmetric positive definite; however, that being the case, the
above topology and algorithm may still be used for the biconjugate gradient method' which has
been proposed for non-symmetric systems. The algorithm is given below: ro = po as before and
io =Po, with io an arbitrarily chosen vector normally evaluated as io = Ir,;

All that is required in this case is the additional evaluation of the matrix-vector product AT$
with 6, a conjugate search vector, and the additional calculation of the vector triad to form the
next search vector iterate $ k + from $ k . By utilizing the information of the submatrix Aq that the
qth processor has available, the full vector AT$ may be subdivided amongst the processors by
storing the partially summed vector (Aq)Tfiq as shown below:

(A"T6j.j =

l) k + 1.1

q (q - l) k + 1, N

. . .

. . .

with 6 9 ~ RN, so that AT$ is given by
m

AT$= 1 Sq.
q = 1

1r- 8 q k

l) k + l

The same communications process is used by the biconjugate algorithm as that used for the
conjugate gradient method. However, the vector transmitted to the qth processor from the
(q - 1)th is of length N and, once received, the qth processor simply adds on the partial sum 6i3 so
that the end processor can transmit the full vector AT$ back to the master process.

Once a solution has been obtained, off-body velocities may be evaluated. This calculation can
also be implemented in parallel by dividing the fluid domain 9 into subdomains such that

9=91 v 9 2 v. . . gq v. . . gm,
where these subdomains may be either exterior or interior to the body surface depending on the
problem being solved. Since each processor has stored the entire geometry data of the solid body,
no communication between processors is required and the velocities for each subdomain may be
calculated in parallel. This type of evaluation may be particularly useful for field integral methods
in subsonic regions such as that described by Sinclair. l6

102 T. DAVID AND G. BLYTH

5. TIME COMPLEXITY ANALYSIS

Here we follow the analysis originally done by Gropp and Smith.17 It can be seen from the above
that the evaluation of the matrix of influence coefficients is implemented in perfect parallelism,
since no interprocessor communication is required. Initially we ignore the matrix coefficient
evaluation for the purposes of analysing the scalability of the algorithm. With the topology
chosen and the conjugate gradient algorithm as a solution procedure we assume that the time
taken for a conjugate gradient iteration is split into two disjoint parts:

(i) evaluation of the submatrix-vector product Aqpk, the linked triads and the associated inner
products

(ii) the communication time for broadcasts and pulsed accumulation of the vector Ap, both
between node and slave and between processors.

For the communication time we assume that there exists a start-up time y and a data transfer
rate a; these parameters are non-dimensionalized using the floating point speed of the processor.
To model the communication times, we define four different types of communication: type 1, that
of communication between the master process and node 1; type 2, between node (q - 1) and node
q; type 3, between node q and slave q; type 4, between slave (q - 1) and slave q. Subscripts 1-4 will
be used to denote the corresponding start-up and transfer rates yi and cli. For the presented linear
topology, types 1 and 3 are between processes, types 2 and 4 are between processors. It is expected
that 'on-board' communication (types 1 and 3) will be faster than interprocessor communication
(types 2 and 4).

The iteration is initiated by the master process transmitting the search vector P k to node 1.
Node 1 in turn transmits this information to the slave 1 process before passing the data to node 2.
In general, node q passes the data to the slave q process before transmitting to the next processor
node. After each slave process has received the vector P k , it evaluates the submatrix-vector
product Aqpk and transmits the accumulated vector c1 0 . . . 0 c4 to the slave (q+ 1) process.
Finally, the slave m process receives the c1 0 . . . @c"-' accumulated vector and transmits the
full vector Ap, to the master process. In order to model the iteration time as a function of the
problem size N and the number of processors rn, we assume that the work done by each processor
in evaluating Aqpk is equal and there exists perfect load balancing. Since each slave process
receives the search vector P k in numerical order, slave process j will therefore have evaluated Ajpk
before process j + 1. Each slave process is thus ready to receive the accumulated vector from
the left and the rate-limiting step becomes the transmission of the accumulated vector
c1 0 . . . 0 cm-' to slave m and its subsequent passing of the full vector back to the master
process. The evaluation of the general submatrix-vector product A4p, can effectively be ignored
for all the slave processes apart from the end process in the modelling of the time per iteration,
since this is done in parallel owing to the order in receiving the search vector P k and the
assumption of perfect load balancing.

For a problem of N panels and rn processors we have that the time for a single conjugate
gradient iteration is

A N 2 + BN
m

z(m, N)=3y1 +Nal + (m - 1)(yz+Na2)+m(y3+Nc13)+2(y4+Na4)+ + C N + D .

(22)
In the above model we have used non-dimensionlized constants A, B, C and D to take account of
loop start-up and counter times for the work done in each slave process. These constants were
evaluated using small independent timing programmes and non-diminisionalized using the

PARALLEL PANEL METHODS 103

floating point speed of the processor. Also, we have taken the worst case in communicaton, i.e.
sending a full vector to the end slave process, but the true length of the actual vector transmitted
will vary little from that modelled. In addition, the master computations are evaluated whilst the
slave processes are in idle time, since they require the new conjugate direction search vector
pt before continuing their next iteration. In order to model this, we have effectively added the
master and slave work together. As can be seen, as N gets larger, the communication costs are
a smaller fraction of the overall work per processor. However, for a constant problem size, with
both N and m increasing in size such that N'/m=constant, the communication time and time
taken to evaluate the linked triads will be an important factor.

We may now use Gropp and Smith's ideas further to analyse the algorithm, in particular as
N becomes indefinitely large. Since the time function z(m, N) includes an inverse term in m, then
for a specific problem size there will be an optimal value for m above which the efficiency will
begin to decrease. The maximum speed-up is achieved when

and from this the optimal value of m is

As N gets progressively larger, mopt tends to the value

By using the optimal value (equation (24)), we may evaluate the maximum speed-up
S , obtainable for a specific problem size, i.e. N2/m. Initially we write the speed-up as

and the optimal speed-up therefore becomes

where

It is easy to show that for N increasing without bound,

lim SmoPt(N)=- - =+ lim (mOpt)
N + a , 2 $1 N-a,

to leading order, showing that the speed-up has no upper bound for the problem size growing
indefinitely large. The ratio of slave work to communication time between slaves provides the
coefficient for speed-up, indicating, as is intuitive, that faster communication times will signific-
antly enhance the solution times. Clearly, memory restraints on each transputer will provide the
physical restriction to this limit.

104 T. DAVID AND G. BLYTH

The above model assumes that m divides N . If this is not the case, the algorithm tries to balance
the load such that each processor has in excess no more than N elements (ie. a single row of the
matrix) to work on compared to any other. Suppose N mod m=q. Then the first q processors
work on Nlm + 1 rows and the m - q processors work on the remaining Nlm rows. Tests have
shown that this type of load imbalance does not significantly degrade speed-up.

For the bi-conjugate gradient method we may write a similar equation relating the time taken
for a single iteration step as a function of problem size N and number of processors m:

z(m, N) = 3 y 1 + 2 N a 1 + (m - 1)(yZ+2Naz)+m(y3+2Na3)+(y4+2Na4)
 AN^ + BN AN^

+ E N + F + - + G N .
m m +

For large enough N the communication time is twice that for the conjugate gradient algorithm
and the only difference lies in the work done per processor plus some additional vector additions
by the master process. This yields the optimum number of processors for the algorithm as
a function of N as

This value is identical to that evaluated for the conjugate gradient algorithm as N grows
indefinitely large.

6. RESULTS AND DISCUSSION

Simple timing tests were carried out to evaluate the communication constants y i and ai. These are
shown below in their appropriate non-dimensionalized form:

Y 1 = Y 2 = y 3 =?4 = lo, al=a3=O16, = = 1.9.

As a preliminary test case an axisymmetric body immersed in a cross-flow of specified angle
/3 was chosen. The test body was a sphere and the onset flow U has unit magnitude with /3 = 7114.
Ellipsoids were also used but timings for the solution were almost identical to those of the sphere
and are not shown here.

Speed-up S , and efficiency E are defined as

execution time for a single processor
execution time for m processors

S , = '

S m E = - - .
m

In the above we have deviated from the more usual definition of S , (i.e. using the best serial
algorithm) by utilizing the time taken for a single processor running both master and slave
processes. This is due to the differences in operating system when running a serial programme to
that for a parallel programme. If the more usual definition of S, is used, then efficiency values
become greater than unity and hence do not provide a representative statement of parallel
efficiency.

Table I shows the speed-up and efficiency as a function of the number of processors for the
axisymmetric sphere composed of a number of panels, namely 100, solved using the conjugate
gradient method. The total number of iterations required for a solution with E = was three
using an initial value of the source strengths of zero.

PARALLEL PANEL METHODS 105

Table I

m (number
of processors)

Constant N Constant N 2 Jm

S m E

3
4
5
6
7
8
9

10
11

2.86 0.95
3-83 0-96
4.73 0.95
5.50 092
6.15 0.88
696 087
7.44 0.83
8.50 0.85
8.59 0.78

S m

2.96
3-96
4.92
5.88
6.85
7.70
8.63
9.61

1041

E

099
099
0.98
0.98
0.98
0.96
0.96
096
0.95

To place the results given in Table I in context, the times taken for a single transputer running
both master and slave processes for 100 and 250 panels were 21.6 and 133- 8s respectively. The
efficiency figures are encouragingly high and this is due to the large time spent in evaluating the
influence matrix A compared to that of the conjugate gradient iterations. A performance analysis
of the code showed that for the above axisymmetric case only 3.5% of the total computation time
was spent in iterations. For problems involving larger numbers of iterations this figure will clearly
increase, but the dominant part of the CPU time will almost always be spent in matrix
evaluations. Table I also shows the speed-up and efficiency values for a constant grain size, i.e.
N 2 / m = lo4. Here again the efficiencies maintain high values, principally owing to the large
proportion of the time taken for solution in evaluating the influence matrix.

Tests were done to provide experimental evidence for values of mopt. For each problem size
(constant N and constant number of iterations) timings were measured for increasing numbers of
processors, thus enabling a minimum time to be evaluated and hence an optimum number of
processors for the iteration stage of the algorithm. Table I1 shows the comparison between the
theoretical value for mopt and the optimum value found from computations using the axisym-
metric sphere test case. The results show excellent agreement with theory.

Although only a small percentage of the total computation time, single-iteration time results
were obtained for various values of N and m using the linear topology. These showed that for high
numbers of processors (22) the time for each iteration cycle varied between 0.2 s (500 panels) and
2-9 s (3000 panels).

It seems interesting to note the apparent robustness of the conjugate gradient algorithm used
with the panel method. As mentioned in Section 1, non-preconditioned CG metods have been
successfully employed on quite complex structures, in the case of Reference 9 a full helicopter
body. The method presented in this paper has also been used with great success on several
problems, notably that of the simulation of the flow of bone marrow surrounding an aspiration
needle immersed in trabecular bone.' * This involved a difficult rectangular shape to be simulated
in addition to non-zero normal velocity boundary conditions. Figure 3 shows a 2D example using
multiple bodies. The onset flow is provided by a uniform stream from left to right with a single
vortex situated at the quarter-chord point of the aerofoil. The number of panels required to
simulate the flow was approximately 400 and no preconditioning was required. That being said,
preconditioning of the matrix will be needed in the future to ensure convergence for the large
variety of industrial problems encountered.

106 T. DAVID AND G. BLYTH

Table I1

100
200
300
400
500
600
700
800
900

1000

10.1
14.6
18.0
21.9
23,4
25.7
27.8
29.7
31.6
33.3

10
13
17
20

2 22

Figure 3. Flow around aerofoil in a duct with constant-velocity contours and streamlines

In order to show that the algorithm could provide reasonable ‘turnaround’ times for large
values of N , tests were carried out on flows past an ellipsoid of revolution with a major/minor axis
ratio of 8 : 1. Table 111 shows values of the times (in seconds) taken for the total calculation, z,, the
symmetric flow matrix, zl, the cross-flow matrix, z2, and a single CG iteration, z i , for values of
N up to 3000. In this case the number of processors was held constant at 22.

PARALLEL PANEL METHODS 107

Table I11

N 71 z1 z2 Ti

1000 156 45 46 0.54
1500 261 103 104 0.98
2000 419 181 198 1.5
3000 929 414 447 2.9

In comparing these results with other panel method implementations such as that of Fiddes
and Chalmers3 care must be taken in that for the axisymmetric test case

(i) two independent N x N matrices are evaluated per solution
(ii) numerical integration is used to evaluate all influence coefficients, apart from the diagonals,

whereas simple analytic element evaluations are used for both 2D and 3D cases.

In addition, allowance must be made for the different number of processors used.
For the axisymmetric and two-dimensional geometries the number of panels needed for

a reasonably good simulation is small enough for the on-board transputer memory to hold all the
coefficients of the influence marix (a i j } . In the fully 3D case a significantly larger number of panels
are needed. However, only a small percentage of these coefficients need be stored; the rest may be
recalculated at each iteration stage using simple multipole expansion approximation^.^ Assuming
a small number of iterations (compared to N) are required for solution, the increased computa-
tion will have the effect of increasing the value of A in the complexity analysis. New vector
processors such as the Intel is60 in conjunction with transputers provide a considerable increase
in Mflop rates, especially when used with vectorizing compiler^.'^ Hence the increased work per
node would not seem to be a significant problem. By utilizing the ‘freed-up’ memory, a substantial
increase in the problem size may be attempted. In addition, the processors used in the present
method had only 4 Mbytes on-board memory. This is not an upper limit for this type of hardware
(48 Mbytes are available at present) and the next generation of transputers will probably have the
capability for memory sizes an order-of-magnitude higher than this.

7. CONCLUSIONS

The present study has shown that a simple linear topology of distributed memory processors can
provide an environment for fast and highly efficient parallel algorithms using conjugate direction
methods. Significant speed-ups can be achieved by parallelizing the matrix evaluation such that
each processor evaluates only a submatrix. This is achieved by the fact that the matrix coefficients
are independent of each other and rely only on the boundary geometry. The resulting matrices are
dense and large (order N 2) , so that by subdividing the matrix, significant increases in problem size
may be attempted. This type of simple parallelization may also be used for other boundary
element formulations and is not restricted to panel methods.

Similar advantages for parallelism become apparent when considering the computation of
vector and scalar variables at external (internal) points within the computational domain. Here
the domain is divided into subdomains, with each processor responsible for a particular sub-
domain. Task-farming algorithms may be used for this type of problem; however, this seems
inappropriate at present with such a simple topology, since idle processors would require
information from the master process and thus the passing of that information through all node
processes to the left of that processor. Calculations for the evaluation of off-body velocities and

108 T. DAVID AND G. BLYTH

pressure values may be done in parallel, with a minimum of communication required to collate
the data for transmission to the master process.

Domain integrals may be evaluated in parallel in the same manner and this has particular use
for problems involving subsonic potential flows: where field integrals are required as part of an
iterative process, and for the study of convective problems in laminar flow.”

The parallel algorithms for the conjugate and biconjugate gradient methods have been shown
to be scalable insofar as maximum speed-up is attained for specific values of the number of
processors used, mop*, increasing as N1/’, with N the problem size. Additionally, the speed-up also
increases as N112. Results have shown that for a constant grain size NZ/m, efficiencies of the order
of 95%-99% are attainable. This is due to the large computational time taken in the matrix
evaluation; however, it seems that for an increasing proportion of time taken in the conjugate
matrix solver, efficiencies will still be high if the optimum value of processors is made available.

For most problems solved using panel methods the value of N is large (order lo3) and in these
circumstances the number of processors available will rarely exceed N1l2, so that the maximum
speed-up may be achieved by simply evenly distributing the matrix evahtation work across the
linear array of processors.

ACKNOWLEDGEMENT

Our thanks are due to Robert Lewis, an undergraduate in the Department of Mechanical
Enginering, Universicy of Leeds for his work in producing the results of Figure 3.

REFERENCES

1. J. M. Ortega, Intruduction to Parallel and Vector Solution of Linear Systems, Plenum, New York, 1988.
2. P. Melli and C. A. Brebbia, Supercomputing in Engineering Structures, Springer, New York, 1989.
3. S. Fiddes and A. G. Chalmers, ‘Parallel processing for panel methods’, Parallel Processingfor Fluid Flow, Methods and

4. J. L. Hees and A. M. 0. Smith, ‘Calculation of potential flow about arbitrary bodies’, Prog. Aeronaut. Sci., 8, 1-138

5. J. A. H. Petrie, ‘Development of an efficient and versatile panel method for aerodynamic problems’, Ph.D. Thesis,

6. P. M. Sinclair, ‘A field integral method for the calculation of transonic flow over complex aerodynamic shapes’,

7. T. David, P. H. Gaskell and A. Saia, ‘Integrating sculptured surface design with the panel method for flow

8. C. A. Brebbia, The Boundary Element Method for Engineers. Pentech, London, 1978.
9. J. Ryan, T. H. Li? and Y. Morchoisne, ‘Panel code solvers’, Notes Numer. Fluid Mech., 20, 335-342 (1988).

Systems, The Royal Institute, London, 27 June 1990, pp. 85-94.

(1967).

University of Leeds, March 1979.

Ph.D. Thesis, University of Leeds, August 1987.

visualisation’, in D. C. Handscomb (ed.), Mathematics of Surfaces I l l , Clarendon, Oxford, 1989, pp. 301-3 15.

10. G. K. Batchelor, An Introduction to Fluid Mechanics, Cambridge University Press, Cambridge 1967.
11. M. I. G. Bloor and M. J. Wilson, ‘Blend design as a boundary value problem’, in W. StraBer and H. P. Seidel (eds),

12. M. I. G. Bloor and M. J. Wilson, ‘Using partial differential equations to generate free form surfaces’, CAD, 22,202-212

13. 0. D. Kellogg, Foundations of Potential Theory, Dover, New York, 1929.
14. W. D. Joubert and T. A. Manteuffel, ‘Iterative methods for non-symmetric linear systems’, in D. R. Kincaid and

15. R. Fletcher, ‘Conjugate gradient methods for indefinite systems’, in Lecture Notes in Mathematics, Vol. 506, 1975,

16. P. M. Sinclair, Aeronautical Journal of Royal Aeronautical Society Paper No. 1394, June/July 1986.
17. W. D. Gropp and E. B. Smith, ‘Computational fluid dynamics on parallel processors’, Comput. Fluids, 18, 289-304

18. J. Rijcken, ‘A computational model of the flow of bone marrow in the vicinity of a needle’, Final Year Report,

19. N. Miller, ‘The wave equation, case study of a parallel i860 application’, Parallelogram, (32) 14-16 (1990).
20. P. Skerget and C. Brebbia, ‘The solution of convective problems in laminar flow’, in Boundary Elements, Proc. 5th Int.

Geometrical Modelling (Theory and Practice), Springer Berlin, 1989, pp. 221-234.

(1 990).

L. J. Hayes (eds), Iterative Methods for Large Linear Systems, Academic, New York, 1990.

pp. 73-89.

(1990).

Department of Mechanical Engineering, University of Leeds, April 1990.

ConJ on Boundary Elements, Springer, New York, 1983, pp. 251-274.

